Existence of solution for a $\mathrm{p}(\mathrm{x})$-Kirchhoff type with singular weights

A. Zaki ${ }^{1}$, A. Hamydy ${ }^{2}$, N. Tsouli ${ }^{3}$
${ }^{2}$ Centre Regional des Metiers de l'Education et de la Formation, Tanger, Morocco.
${ }^{1,3}$ Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science, University Mohammed I, Oujda, Morocco.
E-mail: a.zaki@ump.ac.ma ${ }^{1}$, a.hamydy@yahoo.fr ${ }^{2}$, tsouli@hotmail.com ${ }^{3}$

Abstract

In this paper we will use the compact embedding $W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \hookrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$ and Galerkin's approach to prove the existence of at least one solution to a $\mathrm{p}(\mathrm{x})$-Kirchhoff problem with convection term and singular weights.

2010 Mathematics Subject Classification. 18B40. 18C15, 18 D 05.
Keywords. existence, $\mathrm{p}(\mathrm{x})$-Laplacian, singular weight, Galerkin's approach, compact embedding.

1 Introduction

We consider the following problem

$$
\left\{\begin{align*}
-M\left(\int_{\Omega} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)} \mathrm{dx}\right) \operatorname{div}\left(\frac{1}{d^{\alpha}}|\nabla u|^{p(x)-2} \nabla u\right) & =\frac{1}{d^{\beta}} h(x, u)+\frac{1}{d^{\gamma}} g(x, \nabla u) \text { in } \Omega \tag{1.1}\\
u & =0,
\end{align*}\right.
$$

where Ω is a bounded domain in \mathbb{R}^{N} with smooth boundary $\partial \Omega, \Delta_{p(x)}$ is the standard $\mathrm{p}(\mathrm{x})$-Laplacian operator and $p, q \in C_{+}(\bar{\Omega})=\left\{h \in C(\bar{\Omega}), h^{-}>1\right\}$ where $h^{-}=\min _{x \in \bar{\Omega}} h(x), h^{+}=\max _{x \in \bar{\Omega}} h(x)$. Assume that M, h, and g satisfy the following assumptions:
$\left(H_{1}\right) \quad M:(0,+\infty) \longrightarrow(0,+\infty)$ continuous and $m_{0}=\inf f_{s>0} M(s)>0$.
$\left(H_{2}\right) h: \Omega \times \mathbb{R} \longrightarrow \mathbb{R}$ is locally Holder continuous, there exist the positive constants $a_{1} \in$ $L^{p^{\prime}(x)}\left(\Omega, \frac{1}{d^{\beta}}\right), b_{1} \in L^{\frac{p(x)}{p(x)-\left(r_{1}(x)+1\right)}}\left(\Omega, \frac{1}{d^{\beta}}\right)$ such that

$$
h(x, t) \leq a_{1}+b_{1}|t|^{r_{1}} \quad \forall(x, t) \in \Omega \times \mathbb{R}
$$

where $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$ and $0<r_{1}^{-} \leq r_{1}(x) \leq r_{1}^{+}<p^{-}-1$.
$\left(H_{3}\right) g: \Omega \times \mathbb{R}^{n} \longrightarrow \mathbb{R}$ is locally Holder continuous function and there exist positive constants $a_{2} \in L^{p^{\prime}(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right), b_{2} \in L^{\frac{p(x)}{p(x)-r_{2}(x)}}\left(\Omega, \frac{1}{d^{\gamma}}\right) \cap L^{\infty}(\Omega)$ such that:

$$
g(x, \delta) \leq a_{2}+b_{2}|\delta|^{r_{2}(x)} \quad \forall(x, \delta) \in \Omega \times \mathbb{R}^{n}
$$

where $0<r_{2}^{-} \leq r_{2}(x) \leq r_{2}^{+}<p^{-}-1$.

Advanced Studies: Euro-Tbilisi Mathematical Journal Special Issue (10-2022), pp. 191-202.

Note that several authors have extensively studied the semi-linear case $(p(x)=p=2)$. We quote for example $[12,13,14,15,16]$. Later, many researches are interested in these problems with $p>2$, we refer the reader to $[17,18,19,20,21,22]$. In [22], the author considered the problem

$$
\left\{\begin{align*}
-M\left(\int_{\Omega}|\nabla u|^{p} \mathrm{dx}\right) \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right) & =f(x, u, \nabla u) & & \text { in } \Omega \tag{1.2}\\
u & =0, & & \text { on } \partial \Omega,
\end{align*}\right.
$$

he prove the existence of the positive solution of the problem (1.2).
Inspired by the papers mentioned above and the reference therein, we shall generaloze the compact and continues embedding introduced by Pavel Drbek and Jess Hernndez (cf. [1]). Futhermore, as applications we use the Galirkin method to prove that the problem (1.1) admits at least one nontrivial weak solution.
Now, we will introduce our main results.
Theorem 1.1. Suppose $\left(H_{1}\right)-\left(H_{3}\right)$ and $0 \leq \beta, \gamma<\alpha+p^{-}$. Then, the problem (1.1) admits at least one nontrivial weak solution.

2 Preliminaries

We denote by $\left(L^{p(.)}(\Omega, \vartheta(x)),\|\cdot\|_{p(x)}\right)$ and $\left(W^{1, p(.)}(\Omega, \vartheta(x)),\|\cdot\|_{1, p(x)}\right)$ the usual the weighted variable exponent Lebesgue space and Sobolev space, respectively.
For $p(.) \in L_{+}^{\infty}(\Omega)$ and $\vartheta \in L_{L o c}^{1}(\Omega)$ such that $\vartheta>0$ almost everywhere in Ω. We consider the weighted variable exponent Lebesgue space by:

$$
L^{p(x)}(\Omega, \vartheta)=\left\{u: \quad \Omega \longrightarrow \mathbb{R}, \quad \text { measurable and } \quad \int_{\Omega} \vartheta(x)|u(x)|^{p(x)} d x<\infty\right\}
$$

with the Luxemburg norm

$$
\|u\|_{L^{p(x)}(\Omega, \vartheta)}=\|u\|_{p(x)}=\inf \left\{\mu>0 / \rho_{p(\cdot), \vartheta}\left(\frac{u}{\mu}\right)=\int_{\Omega} \vartheta(x)\left|\frac{u(x)}{\mu}\right|^{p(x)} d x \leq 1\right\}
$$

and the space $\left(L^{p(x)}(\Omega, \vartheta),\|\cdot\|_{p(x)}\right)$ is a Banach.
Moreover, $u \in L^{p(x)}(\Omega, \vartheta)$ if and only if $\|u\|_{L^{p(x)}(\Omega, \vartheta)}=\left\|u \vartheta^{\frac{1}{p(\cdot)}}\right\|_{L^{p(x)}(\Omega)}<\infty$.
The relations between the modular $\rho_{p(.), \vartheta(.)}$ and the norm $\|\cdot\|_{L^{p(x)}(\Omega, \vartheta)}$ are as follows:

$$
\begin{equation*}
\min \left\{\rho_{p(.), \vartheta(.)}(u)^{\frac{1}{p^{-}}}, \rho_{p(.), \vartheta(.)}(u)^{\frac{1}{p^{+}}}\right\} \leq\|u\|_{L^{p(x)}(\Omega, \vartheta)} \leq \max \left\{\rho_{p(.), \vartheta(.)}(u)^{\frac{1}{p^{-}}}, \rho_{p(.), \vartheta(.)}(u)^{\frac{1}{p^{+}}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\min \left\{\|u\|_{L^{p(x)}(\Omega, \vartheta)}^{p^{-}},\|u\|_{L^{p(x)}(\Omega, \vartheta)}^{p^{+}}\right\} \leq \rho_{p(.), \vartheta(.)}(u) \leq \max \left\{\|u\|_{L^{p(x)}(\Omega, \vartheta)}^{p^{-}},\|u\|_{L^{p(x)}(\Omega, \vartheta)}^{p^{+}}\right\} \tag{2.2}
\end{equation*}
$$

If $0<k \leq \vartheta$, then we have $L^{p(x)}(\Omega, \vartheta) \hookrightarrow L^{p(x)}(\Omega)$, since one easily sees that

$$
k \int_{\Omega}|u(x)|^{p(x)} d x \leq \int_{\Omega} \vartheta(x)|u(x)|^{p(x)} d x
$$

and

$$
k\|u\|_{L^{p(x)}(\Omega)} \leq\|u\|_{L^{p(x)}(\Omega, \vartheta)} .
$$

Furthermore, $L^{p^{\prime}(x)}\left(\Omega, \vartheta^{*}\right)$ is the dual space of $L^{p(x)}(\Omega, \vartheta)$, where $\frac{1}{p(.)}+\frac{1}{p^{\prime}(.)}=1$ and $\vartheta^{*}=\vartheta^{1-p^{\prime}(.)}=$ $\vartheta^{\frac{-1}{1-p(\cdot)}}$. For more details, we refer [3]-[5].

Lemma 2.1. ([2]) Let $\Omega \subset \mathbb{R}^{N}$ is bounded. The function $u \in C_{0}^{\infty}(\Omega)$ satisfies Poincar inequality in $L_{m}^{1}(\Omega)$ if and only if

$$
\int_{\Omega} m(x)|u(x)| d x \leq c_{1}\left(\operatorname{diam}(\Omega) \int_{\Omega} m(x)|\nabla u(x)| d x\right.
$$

is holds, where m is a weight function.
We define $W_{p(.)}(\Omega)=\left\{\vartheta \in L_{L o c}^{1}(\Omega) / \quad \vartheta^{\frac{-1}{p(.)-1}} \in L_{L o c}^{1}(\Omega)\right\}$.
Proposition 2.2 ([4]). If $\vartheta \in W_{p(.)}(\Omega)$, then

$$
L^{p(x)}(\Omega, \vartheta) \hookrightarrow L_{L o c}^{1}(\Omega) \hookrightarrow D^{\prime}(\Omega)
$$

where $D^{\prime}(\Omega)$ is distribution space.
We put the weighted variable Sobolev spaces $W^{k, p(x)}(\Omega, \vartheta)$ by

$$
W^{k, p(x)}(\Omega)=\left\{u \in L^{p(x)}(\Omega, \vartheta): \quad D^{\alpha} u \in L^{p(x)}(\Omega, \vartheta), \quad|\alpha| \leq k\right\}
$$

where

$$
D^{\alpha} u=\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha_{2}} \ldots \partial x_{N}^{\alpha_{N}}},
$$

is the derivation in distribution sense, with $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{N}\right)$ is a multi-index and $|\alpha|=\sum_{i=1}^{N} \alpha_{i}$. The space $W^{k, p(x)}(\Omega, \vartheta)$, equipped with the norm

$$
\|u\|_{W^{k, p(x)}(\Omega, \vartheta)}=\sum_{|\alpha| \leq k}\left\|D^{\alpha} u\right\|_{L^{p(x)}(\Omega, \vartheta)}
$$

also becomes a Banach, separable and reflexive space. In particular, the space $W^{1, p(x)}(\Omega, \vartheta)$ is defined by

$$
W^{1, p(.)}(\Omega, \vartheta)=\left\{u \in L^{p(.)}(\Omega, \vartheta) \quad / \quad|\nabla u| \in L^{p(x)}(\Omega, \vartheta)\right\}
$$

to be the weighted Sobolev space with the norm

$$
\|u\|_{W^{1, p(\cdot)}(\Omega, \vartheta)}=\|u\|_{L^{p(x)}(\Omega, \vartheta)}+\|\nabla u\|_{L^{p(x)}(\Omega, \vartheta)}
$$

Also define $W_{0}^{1, p(x)}(\Omega, \vartheta) \subset W^{1, p(x)}(\Omega, \vartheta)$ to be a closure of the set $C_{0}^{\infty}(\Omega)$ (smooth functions with compact support in Ω) with respect to the norm $\|\cdot\|_{W^{1, p(.)}(\Omega, \vartheta)}$.
In the same way as in [9] Theorem 2.1, we show the following proposition

Proposition 2.3. Assume that the boundary of Ω possesses the cone property and $p \in C_{+}(\bar{\Omega})$. Suppose that $c \in L^{\beta(x)}(\Omega), c(x)>0$ for a.e. $x \in \Omega$. If $q(x) \in C_{+}(\bar{\Omega})$ and

$$
q(x)<\frac{\beta(x)-1}{\beta(x)} p^{*}(x), \quad \forall x \in \bar{\Omega} .
$$

Then

$$
W^{1, p(x)}(\Omega) \hookrightarrow L^{q(x)}(\Omega, c(x))
$$

is a compact embedding.
Proposition 2.4. ([10]) Let $p, r \in C_{+}(\bar{\Omega})$ such that $r(x) \leq p_{k}^{*}(x)$ for all $x \in \bar{\Omega}$. Then, the following embedding is continuous

$$
W^{k, p(x)}(\Omega) \hookrightarrow L^{r(x)}(\Omega)
$$

Remark 2.5. If we change \leq by $<$, the embedding is compact.
Furthermore, we define $\rho: L^{p(x)}(\Omega) \rightarrow \mathbb{R}$ by

$$
\rho_{p(x)}(u)=\int_{\Omega}|u|^{p(x)} d x
$$

, then the following relations hold
Proposition $2.6([6,7,8])$. If $u, u_{n} \in L^{p(x)}(\Omega),(n=1,2, \ldots)$ then the following statements are equivalent:
(i) $\lim _{n \longrightarrow \infty}\left|u_{n}-u\right|_{p(x)}=0$;
(ii) $\lim _{n \longrightarrow \infty} \rho_{p(x)}\left(u_{n}-u\right)=0$;
(iii) $u_{n} \longrightarrow u$ in measure in Ω and $\lim _{n \longrightarrow \infty} \rho_{p(x)}\left(u_{n}\right)=\rho_{p(x)}(u)$.

Proposition $2.7([6],[7],[8])$. If $u, u_{n} \in L^{p(x)}(\Omega),(n=1,2, \ldots)$, we have
(1) $|u|_{p(x)}<1$ (respectively $\left.=1 ;>1\right) \Longleftrightarrow \rho_{p(x)}(u)<1$ (respectively $=1 ;>1$);
(2) $|u|_{p(x)}<1 \Rightarrow|u|_{p(x)}^{p^{+}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{-}}$;
(3) $|u|_{p(x)}>1 \Rightarrow|u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{+}}$;
(4) $\left|u_{n}\right|_{p(x)} \rightarrow 0$ (respectively $\left.\rightarrow \infty\right) \Longleftrightarrow \rho_{p(x)}\left(u_{n}\right) \rightarrow 0$ (respectively $\rightarrow \infty$).

Remark 2.8. If we consider $\rho_{p(.), \vartheta(.)}(u)=\int_{\Omega} \vartheta(x)|u|^{p(x)} d x$, instead of $\rho_{p(x)}(u)$, then the statements of Proposition 2.6 and Proposition 2.7 also hold for $u, u_{n} \in W^{1, p(x)}(\Omega, \vartheta(x))$.
Lemma 2.9. (See [11]) Let $F: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a continuous function such that $(F(x), x) \geq 0$, for all x verifying $|x|=R>0$. Then there exists $\gamma \in B_{R}(0)$ such that $F(\gamma)=0$.

3 Main result

Before we consider the existence of weak solution of problem 1.1, we present and study the weighted variable exponent Sobolev spaces.
For $\alpha \in \mathbb{R}^{+}$, we define the following the weighted variable exponent space

$$
L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right):=\left\{u=u(x), x \in \Omega, \int \frac{1}{d^{\alpha}}|u|^{p(x)}<\infty\right\}
$$

equipped with the norm

$$
\begin{equation*}
|u|_{\alpha, p(x)}:=\inf \left\{\mu>0 / \int_{\Omega} \frac{1}{d^{\alpha}}\left|\frac{u(x)}{\mu}\right|^{p(x)} d x \leq 1\right\} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
W^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right):=\left\{u, \int_{\Omega} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)}+|u|_{\alpha, p(x)}^{p(x)}<\infty\right\} \tag{3.2}
\end{equation*}
$$

equipped with the norm

$$
\begin{equation*}
\|u\|_{X}=|u|_{1, \alpha, p(x)}:=|\nabla u|_{\alpha, p(x)}+|u|_{\alpha, p(x)} \tag{3.3}
\end{equation*}
$$

Lemma 3.1. Let $\alpha \in \mathbb{R}^{+}$. The space $W^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$, equipped with the norm $|\cdot|_{1, \alpha, p(x)}$, is Banach space.

Proof. Let $\left(u_{n}\right)_{n}$ be a sequence in X_{γ}. Suppose that $\left(u_{n}\right)_{n}$ is Cauchy sequence in X_{γ}. It is easy to see that $\left(u_{n}\right)_{n}$ (resp. $\left.\left(\left(\partial u_{n} / \partial x_{1}, . ., \partial u_{n} / \partial x_{N}\right)\right)_{n}\right)$ is also Cauchy sequence in $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ (resp. $\left.\left(L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)\right)^{N}\right)$. Using the fact that the space $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ is Banach space, we obtain that there exist u and $w_{i}, i=1,2, . ., N$, such that the sequence $\left(u_{n}\right)_{n}$ converges to u in $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ and the sequence $\left(\partial u_{n} / \partial x_{i}\right)$ converges to w_{i} in $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ for $i=1, . ., N$. For every $\psi \in D(\Omega)$, we have

$$
\begin{equation*}
\left|\int_{\Omega} u_{n} \psi \mathrm{dx}-\int_{\Omega} u \psi \mathrm{dx}\right| \leq \int_{\Omega}\left|u_{n}-u\right||\psi| \mathrm{dx} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{aligned}
\int_{\Omega}\left|u_{n}-u\right||\psi| \mathrm{dx}= & \int_{\Omega} \frac{1}{d^{\alpha p(x)}}\left|u_{n}-u\right| \frac{1}{d^{-\alpha p(x)}}|\psi| \mathrm{dx} \\
& \leq\left|u_{n}-u\right|_{\alpha, p(x)} \left\lvert\,\left\|\frac{1}{d^{-\alpha p(x)}} \psi\right\|_{p^{\prime}(x)}\right. \\
& \leq\left|u_{n}-u\right|_{\alpha, p(x)}\|\psi\|_{\infty}\left|\frac{1}{d^{-\alpha p(x)}} \|\right|_{L^{p^{\prime}(x)}(\text { supp } \psi)}
\end{aligned}
$$

where $\operatorname{supp} \psi \subset \Omega$ denotes the support of ψ and $\frac{1}{p(x)}+\frac{1}{p^{\prime}(x)}=1$. We deduce

$$
\begin{equation*}
\left|\int_{\Omega} u_{n} \psi \mathrm{dx}-\int_{\Omega} u \psi \mathrm{dx}\right| \leq\left|u_{n}-u\right|_{\alpha, p(x)}\|\psi\|_{\infty}\left\|\frac{1}{d^{-\alpha p(x)}}\right\|_{L^{p^{\prime}(x)}(s u p p \psi)} \tag{3.5}
\end{equation*}
$$

Since $\left|\left\lvert\, \frac{1}{d^{-\alpha p(x)}}\right. \|_{L^{p^{\prime}(x)}(\text { supp } \varphi)}<\infty\right.$ and $u_{n} \longrightarrow u$ in $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ we get

$$
\begin{equation*}
\int_{\Omega} u_{n} \psi \mathrm{dx} \longrightarrow \int_{\Omega} u \psi \mathrm{dx} \quad \text { as } \quad n \longrightarrow+\infty \tag{3.6}
\end{equation*}
$$

Similarly, by $\partial u_{n} / \partial x_{i} \longrightarrow w_{i}$ in $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$, we obtain

$$
\begin{equation*}
\int_{\Omega} \frac{\partial u_{n}}{\partial x_{i}} \psi \mathrm{dx} \longrightarrow \int_{\Omega} w_{i} \psi \mathrm{dx}, i=1, . ., N \tag{3.7}
\end{equation*}
$$

as $n \longrightarrow+\infty$. Then,

$$
\begin{align*}
\int_{\Omega} w_{i} \psi \mathrm{dx}= & \lim _{n \longrightarrow \infty} \int_{\Omega} \frac{\partial u_{n}}{\partial x_{i}} \psi \mathrm{dx} \tag{3.8}\\
& =-\lim _{n \longrightarrow \infty} \int_{\Omega} u_{n} \frac{\partial \psi}{\partial x_{i}} \mathrm{dx} \tag{3.9}\\
& =-\int_{\Omega} u \frac{\partial \psi}{\partial x_{i}} \mathrm{dx} \tag{3.10}\\
& =\int_{\Omega} \frac{\partial u}{\partial x_{i}} \psi \mathrm{dx}, i=1, \ldots, N \tag{3.11}
\end{align*}
$$

We deduce that $\nabla u=w$ and $u_{n} \longrightarrow u$ in $W^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$. This completes the proof. Q.E.D.
Lemma 3.2. Let $\alpha \in \mathbb{R}^{+}$. The space $X_{\alpha}:=W^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ equipped with the norm $|\cdot|_{1, p(x), \alpha}$ is reflexive.
Proof. It is easy to verify that $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ is uniformly convex. Therefore, $L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ is reflexive. Consider the functional

$$
\begin{aligned}
T: X_{\alpha} & \rightarrow E:=L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \times L^{p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)^{N} \\
u & \rightarrow T(u)=(u, \nabla u)
\end{aligned}
$$

Since T is an isometry, we obtain $T\left(X_{\alpha}\right)$ is a closed subspace of E. Then $T\left(X_{\gamma}\right)$ is reflexive, therefore X_{α} is reflexive.
Q.E.D.

Lemma 3.3. Assume that $p, q \in L_{+}^{\infty}(\Omega)$. If $q(x) \leq p(x)$. Then the embedding

$$
L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right) \hookrightarrow L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

is continuously.
Lemma 3.4. Assume that $p, q \in L_{+}^{\infty}(\Omega)$. If $q(x) \leq p(x)$. Then the embedding

$$
W^{m, p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right) \hookrightarrow W^{m, q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

is continuously.

Proof. The proof of Lemma 3.3 and 3.4 are semitric with the proof of Lemma 3.5.
Q.E.D.

The following lemma concerns a result of compact embedding.
Lemma 3.5. Let $p, q \in L_{+}^{\infty}(\Omega)$, we assume $m p(x) \leq n$ and $q(x)<\frac{n p(x)}{n-m p(x)} \forall x \in \bar{\Omega}$. Then

$$
X_{\gamma}=: W^{m, p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right) \hookrightarrow L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

is continuous and compact embedding. We write $X_{\gamma} \hookrightarrow \hookrightarrow L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$.
Proof. For positive constant r with $m r<n$, denote $r^{*}=\frac{n r}{n-m r}$.
Under the asumptions it is easy to see that for arbitrary $x \in \bar{\Omega}$, we can find a neighborhood U_{x} in $\bar{\Omega}$ such that $q^{+}\left(U_{x}\right)<\left(p^{-}\left(U_{x}\right)\right)^{*}$, where

$$
p^{-}\left(U_{x}\right)=\inf \left\{p(y) / \quad y \in U_{x}\right\} ; \quad q^{+}\left(U_{x}\right)=\sup \left\{q(y) / \quad y \in U_{x}\right\} .
$$

Now $\left\{U_{x}\right\}_{x \in \bar{\Omega}}$ is an open covering $\left\{U_{i} \quad / \quad i=1,2, \ldots, s\right\}$ and denoting

$$
p_{i}^{-}=p^{-}\left(U_{i}\right) \quad q_{i}^{+}=q^{+}\left(U_{i}\right),
$$

it is obvious that if $u \in W^{m, p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$ then $u \in W^{m, p(x)}\left(U_{i}, \frac{1}{d^{\gamma}}\right)$, and thus from the lemma 3.4, $u \in W^{m, p^{-}}\left(U_{i}, \frac{1}{d^{\gamma}}\right)$. Therefore by the well-known Sobolev imbedding theorem we have continuous and compact imbedding,

$$
W^{m, p_{i}^{-}}\left(U_{i}, \frac{1}{d^{\gamma}}\right) \hookrightarrow L^{q_{i}^{+}}\left(U_{i}, \frac{1}{d^{\gamma}}\right)
$$

so for every $U_{i}, i=1,2, \ldots, s$ (see [1]), we have $u \in L^{q(x)}\left(U_{i}, \frac{1}{d^{\gamma}}\right)$ and therefore $u \in L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$. We can now assert that $W^{m, p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right) \subset L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$ and the imbedding is continuous and compact.
Q.E.D.

Lemma 3.6. Let $0 \leq \gamma<\alpha+p^{-}$. Then

$$
W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \hookrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right) \hookrightarrow L^{p *(x)}(\Omega)
$$

Proof. Let $\sigma>0$ small enough we define $\Omega_{\sigma}:=\{x \in \Omega \quad / \quad d(x)>\sigma\}$. Consider they maps:

$$
\begin{gathered}
I_{\sigma}: W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \longrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right), \\
I_{\sigma}^{1}: W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \longrightarrow W_{0}^{1, p(x)}\left(\Omega_{\sigma}\right) \\
I_{\sigma}^{2}: W_{0}^{1, p(x)}\left(\Omega_{\sigma}\right) \longrightarrow L^{p(x)}\left(\Omega_{\sigma}\right)
\end{gathered}
$$

and

$$
I_{\sigma}^{3}: L^{p(x)}\left(\Omega_{\sigma}\right) \longrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

Here $I_{\sigma}^{1} u(x)=u(x), x \in \Omega_{\sigma}$ is the " restriction " (bounded and linear map) from $W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ into $W_{0}^{1, p(x)}\left(\Omega_{\sigma}\right) ; I_{\sigma}^{2} u(x)=u(x), x \in \Omega_{\sigma}$ is " embedding " (compact linear map) from $W_{0}^{1, p(x)}\left(\Omega_{\sigma}\right)$ into $L^{p(x)}\left(\Omega_{\sigma}\right) ; I_{\sigma}^{3} u(x)=u(x), x \in \Omega_{\sigma}$ and $I_{\sigma}^{3} u(x)=0, x \in \Omega \backslash \Omega_{\sigma}$ is " zero extension " (bounded and linear map) from $L^{p(x)}\left(\Omega_{\sigma}\right)$ into $L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$.
Then for any $\sigma>0, I_{\sigma}: W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \longrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$ is a compact linear map. Denote by

$$
I: W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right) \hookrightarrow L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

the embedding of $W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ into $L^{p(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)$. Then for $u \in W_{0}^{1, p(x)}\left(\Omega, \frac{1}{d^{\alpha}}\right)$ there exists $K>0$ such that

$$
\begin{aligned}
\left|\left(I_{\sigma}-I\right)(u)\right|_{\gamma, p(x)} & =\int_{\Omega \backslash \Omega_{\sigma}} \frac{1}{d^{\gamma}(x)}|u(x)|^{p(x)} d x=\int_{\Omega \backslash \Omega_{\sigma}} \frac{1}{d^{\gamma}} d^{\alpha+p(x)} \frac{|u(x)|^{p(x)}}{d^{\alpha+p(x)}} d x \\
& \leq \max _{x \in \Omega \backslash \Omega_{\sigma}} d^{\alpha+p^{+}-\gamma} \int_{\Omega \backslash \Omega_{\sigma}} \frac{1}{d^{\alpha+p^{-}}}|u(x)|^{p(x)} d x \\
& \leq \max _{x \in \Omega \backslash \Omega_{\sigma}} d^{\alpha+p^{+}-\gamma}|u|_{p(x), \alpha+p^{-}}^{p^{-}} \\
& \leq \max _{x \in \Omega \backslash \Omega_{\sigma}} d^{\alpha+p^{+}-\gamma}|u|_{p(x), \alpha}^{p^{-}} \\
& \leq \operatorname{Kiax}_{x \in \Omega \backslash \Omega_{\sigma}} d^{\alpha+p^{+}-\gamma}\|u\|_{X}^{p^{-}}
\end{aligned}
$$

The assertion now follows from the fact that $\max _{x \in \Omega \backslash \Omega_{\sigma}} d^{\alpha+p^{+}-\gamma} \longrightarrow 0$ as $\sigma \longrightarrow 0$.
Q.E.D.

3.1 Proof of the main result

We recall that $u \in X_{\alpha}$ is a weak solution to the problem (1.1) if it verifies
$M\left(\int_{\Omega} \frac{1}{p(x)} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)}\right) \int_{\Omega} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)-2} \nabla u \nabla v \mathrm{dx}-\int_{\Omega} \frac{1}{d^{\beta}} h(x, u) . v \mathrm{dx}-\int_{\Omega} \frac{1}{d^{\gamma}} g(x, \nabla u) . v \mathrm{dx}=0 \quad \forall v \in X$
Proof of Theorem 1.1. Let $\kappa=\left\{e_{1}, e_{2}, \ldots, e_{n}, \ldots\right\} \subset X$ such that

$$
E=\overline{\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}}
$$

Define $\vartheta_{n}=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. It is known that ϑ_{n} and \mathbb{R}^{n} are isomorphic and for $\xi \in \mathbb{R}^{n}$, we have an unique $v \in \vartheta_{n}$ by the identification $\varphi: \xi \longrightarrow \sum_{i=1}^{n} \xi_{i} e_{i}=v$.
Denote the function $F=\left(F_{1}, F_{2}, \ldots, F_{n}\right): \mathbb{R}^{n} \longrightarrow \mathbb{R}$ by

$$
F_{i}(u)=M\left(\int_{\Omega} \frac{1}{p(x)} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)}\right) \int_{\Omega} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)-2} \nabla u \nabla e_{i} \mathrm{dx}-\int_{\Omega}(g(x, \nabla u)+h(x, u)) e_{i} \mathrm{dx} \quad u \in \vartheta_{i}
$$

We show the existence of weak solutions $u_{n} \in \vartheta_{n}$ for the problem

$$
\begin{aligned}
& M\left(\int_{\Omega} \frac{1}{p(x)} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p(x)}\right) \int_{\Omega} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n} \nabla e_{i} \mathrm{dx}=\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) \cdot e_{i} \mathrm{dx} \\
&+\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) \cdot e_{i} \mathrm{dx} \\
& u_{n} \in \vartheta_{i}
\end{aligned}
$$

For $u_{n} \in \vartheta_{n}$, we have that

$$
\begin{aligned}
\left(F\left(u_{n}\right), u_{n}\right)= & M\left(\int_{\Omega} \frac{1}{p(x)} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p(x)}\right) \int_{\Omega} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p(x)} \mathrm{dx} \\
& -\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) u_{n} \mathrm{dx}-\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) u_{n} \mathrm{dx} \\
\geq & m_{0} \rho_{p(x), \alpha}\left(u_{n}\right)-\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) \cdot u_{n} \mathrm{dx}-\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) \cdot u_{n} \mathrm{dx} \\
\geq & m_{0} k_{0}\left\|u_{n}\right\|_{X}^{p^{0}}-\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) \cdot u_{n} \mathrm{dx}-\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) \cdot u_{n} \mathrm{dx} .
\end{aligned}
$$

where

$$
p^{0}=\left\{\begin{array}{cc}
p^{-} & \text {if }\|u\|_{X}<1 \tag{3.12}\\
p^{+} & \text {if }\|u\|_{X}>1
\end{array}\right.
$$

According to condition $\left(H_{2}\right)$ and $\left(H_{3}\right)$ we have

$$
\begin{aligned}
\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) u_{n} \mathrm{dx} & \leq\left\|a_{1}\right\|_{p^{\prime}(x) ; \beta} \rho_{p(x), \beta}\left(u_{n}\right)^{\frac{1}{p^{0}}}+\left\|b_{1}\right\|_{\frac{p(x)}{p(x)-\left(r_{1}(x)+1\right)} ; \beta} \rho_{p(x), \beta}\left(u_{n}\right)^{\frac{r_{1}^{+}+1}{p^{0}}} \\
& \leq k_{1}\left\|a_{1}\right\|_{p^{\prime}(x) ; \beta}\left\|u_{n}\right\|_{X}+k_{2}\left\|b_{1}\right\|_{\frac{p(x)}{p(x)-\left(x_{1}(x)+1\right)} ; \beta}\left\|u_{n}\right\|_{X}^{r_{1}^{+}+1} .
\end{aligned}
$$

And

$$
\begin{aligned}
\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) u_{n} \mathrm{dx} & \leq\left\|a_{2}\right\|_{p^{\prime}(x) ; \gamma} \rho_{p(x), \gamma}\left(u_{n}\right)^{\frac{1}{p^{0}}}+\left\|\left|b_{2}\right|^{p^{\prime}(x)}\right\|_{\frac{p(x)}{p(x)-r_{2}(x)} ; \gamma} \rho_{p(x), \gamma}\left(u_{n}\right)^{\frac{r_{2}^{+}+1}{p^{0}}} \\
& \leq k_{3}\left\|a_{2}\right\|_{p^{\prime}(x) ; \gamma}\left\|u_{n}\right\|_{X}+k_{4}\left\|\left|b_{2}\right|^{p^{\prime}(x)}\right\|_{\frac{p(x)}{p(x)-r_{2}(x)} ; \gamma}\left\|u_{n}\right\|_{X}^{r_{2}^{+}+1} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\left(F\left(u_{n}\right), u_{n}\right) \geq & m_{0} k_{0}\left\|u_{n}\right\|_{X}^{p^{0}}-k_{1}\left\|a_{1}\right\|_{p^{\prime}(x) ; \beta}\left\|u_{n}\right\|_{X}-k_{2}\left\|b_{1}\right\|_{\frac{p(x)}{p(x)-\left(x r_{1}(x)+1\right)} ; \beta}\left\|u_{n}\right\|_{X}^{r_{1}^{+}+1} \\
& -k_{3}\left\|a_{2}\right\|_{p^{\prime}(x) ; \gamma}\left\|u_{n}\right\|_{X}-k_{4}\left\|\left|b_{2}\right|^{p^{\prime}(x)}\right\|_{\frac{p(x)}{p(x)-r_{2}(x)} ; \gamma}\left\|u_{n}\right\|_{X}^{r_{2}^{+}+1} .
\end{aligned}
$$

Since $r_{i}^{+}+1<p^{0}, i=1,2$, there exist positive numbers ρ and R such that

$$
\left(F\left(u_{n}\right), u_{n}\right) \geq \rho>0 \quad \text { on } \quad\|u\|_{X}=R .
$$

F is continuous, by lemma 2.9, the equation (3.1) has a solution u_{n} in $\vartheta_{n} \subset X$ with $\left\|u_{n}\right\|_{X} \leq R$. we may assume that there exists $u \in X$ such that

$$
\begin{gathered}
u_{n} \rightharpoonup u \quad \text { in } \quad X, \\
u_{n} \longrightarrow u \quad \text { a.e. } \quad x \in \Omega .
\end{gathered}
$$

By using the Dominated Convergence Theorem, we get

$$
\int_{\Omega} h\left(x, u_{n}\right) w \mathrm{dx} \longrightarrow \int_{\Omega} h(x, u) w \mathrm{dx} \quad \text { for } \quad w \in \vartheta_{n}
$$

In view of condition $\left(H_{3}\right)$, we have

$$
\begin{gathered}
\left\|g\left(x, \nabla u_{n}\right)\right\|_{\frac{p(x)}{r_{2}(x)}, \gamma} \leq\left(\left.\left.\int_{\Omega} \frac{1}{d^{\gamma}}\left|a_{2}+b_{2}\right| \nabla u_{n}\right|^{r_{2}(x)}\right|^{\frac{p(x)}{r_{2}(x)}} \mathrm{dx}\right)^{\frac{r_{2}(x)}{p(x)}} \\
\Rightarrow\left\|g\left(x, \nabla u_{n}\right)\right\|_{\frac{p(x)}{r_{2}(x)}, \gamma} \leq\left(2^{\frac{p^{0}}{r_{2}^{2}}-1}\left(\int_{\Omega} \frac{1}{d^{\gamma}}\left|a_{2}\right|^{\frac{p(x)}{r_{2}(x)}} \mathrm{dx}+\int_{\Omega} \frac{1}{d^{\gamma}}\left|b_{2}\right|^{\frac{p(x)}{r_{2}(x)}}\left|\nabla u_{n}\right|^{p(x)} \mathrm{dx}\right)\right)^{\frac{r_{2}(x)}{p(x)}} \\
\Rightarrow\left\|g\left(x, \nabla u_{n}\right)\right\|_{\frac{p(x)}{r_{2}(x)}, \gamma} \leq\left(\left\|a_{2}\right\|_{\frac{p(x)}{r^{0}}}^{\frac{p^{0}}{r_{2}(x)}, \gamma}\right. \\
\left.\Rightarrow k_{5}\left\|\left.\left.b_{2}\right|^{\frac{p^{0}}{r_{2}^{0}}}\right|_{\infty} \cdot\right\| u \|_{X}^{r_{2}(x)}\right)^{\frac{r_{2}(x)}{p(x)}}
\end{gathered}
$$

implique

$$
\begin{equation*}
\left\|g\left(x, \nabla u_{n}\right)\right\|_{\frac{p(x)}{r_{2}(x)}, \gamma} \leq\left(\left\|a_{2}\right\|_{\frac{p(x)}{}}^{r_{2}(x)}, \gamma+\left.\left.k_{5}| | b_{2}\right|^{\frac{p_{2}^{*}}{r_{2}}}\right|_{\infty} \cdot R^{r_{2}^{+}}\right)^{\frac{r_{2}^{+}}{p^{*}}}<\infty \tag{3.13}
\end{equation*}
$$

From the reflexivity of $L^{\frac{r_{2}(x)}{p(x)}}\left(\Omega, \frac{1}{d^{\gamma}}\right)$, passing to a subsequence if necessary; there is $g(x, \nabla u) \in$ $L^{\frac{r_{2}(x)}{p(x)}}\left(\Omega, \frac{1}{d^{\gamma}}\right)$ such that

$$
\int_{\Omega} \frac{1}{d^{\gamma}} \cdot g\left(x, \nabla u_{n}\right) \cdot \varphi \mathrm{dx} \longrightarrow \int_{\Omega} \frac{1}{d^{\gamma}} \cdot g(x, \nabla u) \cdot \varphi \mathrm{dx} \quad \forall \varphi \in L^{q(x)}\left(\Omega, \frac{1}{d^{\gamma}}\right)
$$

with $\frac{r_{2}(x)}{p(x)}+\frac{1}{q(x)}=1$.
We have

$$
M\left(\left\|u_{n}\right\|_{X}^{p}\right) \int_{\Omega} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p-2} \nabla u_{n} \nabla \varphi \mathrm{dx}=\int_{\Omega} \frac{1}{d^{\beta}} h\left(x, u_{n}\right) \cdot \varphi \mathrm{dx}+\int_{\Omega} \frac{1}{d^{\gamma}} g\left(x, \nabla u_{n}\right) \cdot \varphi \mathrm{dx} \quad \varphi \in X
$$

on the other hand we have $u_{n} \rightharpoonup u$, thus when $n \longrightarrow+\infty$, we get

$$
\begin{equation*}
\int_{\Omega} \frac{1}{d^{\beta}}\left(h\left(x, u_{n}\right)-h(x, u)\right) \cdot\left(u_{n}-u\right) \mathrm{dx} \longrightarrow 0 \tag{3.14}
\end{equation*}
$$

thus

$$
\int_{\Omega} \frac{1}{d^{\alpha}}\left(\left|\nabla u_{n}\right|^{p(x)-2} \nabla u_{n}-|\nabla u|^{p(x)-2} \nabla u\right) \nabla\left(u_{n}-u\right) \mathrm{dx} \longrightarrow 0
$$

Then

$$
\begin{equation*}
\left\|u_{n}-u\right\|_{X} \longrightarrow 0 \tag{3.15}
\end{equation*}
$$

by using the inequality (see [20])

$$
\begin{gathered}
{\left[\left(|\psi|^{p(x)-2} \psi-|\xi|^{p(x)-2} \xi\right)(\psi-\xi)\right] \cdot\left(|\psi|^{p(x)}-|\xi|^{p(x)}\right)^{\frac{2-p(x)}{p(x)}} \geq(p-1)|\psi-\xi|^{p(x)}, \quad 1<p<2} \\
\left(|\psi|^{p(x)-2} \psi-|\xi|^{p(x)-2} \xi\right)(\psi-\xi) \geq\left(\frac{1}{2}\right)^{p(x)}|\psi-\xi|^{p(x)}, \quad p \geq 2
\end{gathered}
$$

Then

$$
\begin{equation*}
u_{n} \longrightarrow u \quad \text { in } \quad X . \tag{3.16}
\end{equation*}
$$

M is continuous, this implies that

$$
\begin{equation*}
M\left(\int_{\Omega} \frac{1}{d^{\alpha}}\left|\nabla u_{n}\right|^{p(x)} \mathrm{dx}\right) \longrightarrow M\left(\int_{\Omega} \frac{1}{d^{\alpha}}|\nabla u|^{p(x)} \mathrm{dx}\right) \tag{3.17}
\end{equation*}
$$

So we obtain that u is a weak solution to the problem (1.1), and from $\left(H_{1}\right)$, we obtain $u \neq 0$.
Q.E.D.

References

[1] P.Drbek, J.Hernndez, Quasilinear eigenvalue problems with singular weights for the pLaplacian, Annali di Matematica Pura ed Applicata (2018).
[2] Heinonen J, Kilpelainen T, Martio O, Nonlinear potential theory of degenerate elliptic equations, Oxford: Oxford University Press (1993).
[3] Aydin I., On variable exponent amalgam spaces, An St Univ Ovidius Constanta Ser Mat.(2012); 20 (3):5-20.
[4] Aydin I., Weighted variable Sobolev spaces and capacity, J Funct Spaces Appl. (2012); 2012:17.
[5] Kokilashvili V, Samko S, Singular integrals in weighted Lebesgue spaces with variable exponent, Georgian Math J. (2003) ; 10(1):145-156.
[6] L. Diening, P. Harjuletho, P.Hst, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Berlin: Springer-Verlag. (2011).
[7] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl. 263:424446.
[8] O. Kovacik and J. Rakosnik, On spaces $L^{p(x)}(\Omega)$ and $W^{k, p(x)}(\Omega)$, Czechoslovak Math. J. 41(116):592618.
[9] X. L. Fan, Solutions for $p(x)$-Laplacian Dirichlet problems with singular coefficients, J. Math. Anal. Appl., 312, 464-477 (2005).
[10] X. L. Fan and D. Zhao, On the spaces $L^{p(x)}$ and $W^{m, p(x)}$, J. Math. Anal. Appl. 263 (2001), 424-446.
[11] S. Kesavan, Topics in Functional Analysis and Applications, John Wiley .. Sons, New York (1989).
[12] C.O. Alves, Francisco Julio S.A. Correa, A sub-supersolution approach for a quasilinear Kirchhoff equation, J. Math. Phys. 56 (2015) 051501.
[13] Yuhua Li, Fuyi Li, Junping Shi, Existence of a positive solution to Kirchhoff type problems without compactness conditions, J. Differential Equations 253 (2012) 2285-2294.
[14] C.Chen, Y.kuo, T.Wu, The Nehari manifold for a kirchhoff type problem involving signchanging weight functions, J. Differential Equations 250 (2011) 1876-1908.
[15] G. Autuori, A. Fiscella, P. Pucci, Stationary Kirchhoff problems involving a fractional operator and a critical nonlinearity, Nonlinear Anal. 125 (2015) 699714.
[16] X.He, W.Zou, Infinitely many positive solutions for kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[17] X. Cheng, G. Dai, Positive solutions for p-Kirchhoff type problems on \mathbb{R}^{n}, Math. Methods Appl. Sci. 38 (12) (2015) 26502662.
[18] Duchao Liu, On a p-kirchhoff equation via Fountain Theorem and Dual Fountain Theorem, Nonlinear Analysis 72 (2010) 302-308.
[19] Chunhan Liu, Jianguo Wang, Qingling Gao, Existence of nontrivial solutions for p-Kirchhoff type equations, Boundary Value Problems (2013), 2013:279.
[20] X.L. Fan, Q.H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problems, Nonlinear Anal. 52 (2003) 18431852.
[21] D. Motreanu, E. Tornatore, Quasilinear Dirichlet Problems with Degenerated p-Laplacian and Convection Term, Mathematics (2021) 9, 139. https://doi.org/10.3390/math9020139.
[22] A. Ourraoui, On an elliptic equation of p-Kirchhoff type with convection term, C.R.Acad.Sci.Paris Ser.I. 19 octobre 2015.

